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Enantioselective direct aldol reaction of α-substituted nitro-
acetates with aqueous formaldehyde for the synthesis of
α-alkyl serines has been achieved under base-free neutral
phase-transfer conditions with a bifunctional chiral phase-
transfer catalyst.

For over two decades, asymmetric phase-transfer catalysis based
on the use of structurally well-defined chiral quaternary
ammonium salts as phase-transfer catalysts has been a topic of
great scientific interest, and recent enormous efforts have resulted
in notable achievements, making it feasible to perform various
stereoselective bond formations under phase-transfer conditions
with aqueous or solid bases.1 Among them, development of
highly enantioselective direct aldol reactions,2 which are one of
the most important reactions in organic synthesis, is a formidable
challenge in phase-transfer chemistry. Although a few examples
of direct catalytic asymmetric aldol reactions under phase-trans-
fer conditions have been reported,3,4 the stereoselectivity of such
aldol products is low to moderate in most cases, except one
example.4 The main reason for modest selectivity of the reac-
tions originates from the retro-aldol reaction, which is difficult to
suppress under basic phase-transfer conditions.5 In the course of
our study on the development of asymmetric reactions under
phase-transfer conditions, we have recently discovered the
hitherto unknown base-free neutral phase-transfer reaction
system in enantioselective conjugate additions.6 In this context,
we are interested in the application of this attractive base-free
neutral reaction system to the direct aldol reaction. Here we wish
to report direct catalytic asymmetric aldol reaction of α-substi-
tuted nitroacetates with aqueous formaldehyde, which is one of
the most convenient C1 sources in organic synthesis,7 under
base-free neutral phase-transfer conditions with low catalyst

loading (0.1 mol%). This reaction offers a practical synthetic
method for optically active α-alkyl serines as biologically impor-
tant compounds (Scheme 1).8

We first investigated the effect of ester moiety of 2-nitropro-
panoate in asymmetric aldol reaction with aqueous formaldehyde
under base-free neutral conditions (Table 1, entries 1–4).
Attempted reaction of methyl 2-nitropropanoate and aqueous for-
maldehyde in toluene/H2O (1 : 1) under the influence of bifunc-
tional chiral phase-transfer catalyst (S)-1 with low catalyst
loading (0.1 mol%) at room temperature (25 °C) for 24 hours
afforded an aldol product 2a in high yield with almost no enan-
tioselectivity (entry 1). Exchange of the alkyl group of ester
moiety to bulky tert-butyl group gave the aldol product 2b with
low enantioselectivity (entry 2). Pleasingly, the use of benzyl
2-nitropropanoate improved the enantioselectivity (35% ee, entry
3), and further improvement of enantioselectivity was attained
using diphenylmethyl 2-nitropropanoate as a substrate in
toluene/H2O (68% ee, entry 4). With the diphenylmethyl 2-nitro-
propanoate as a key substrate for the reaction, solvent effect was
investigated (Table 1, entries 4–7). Although the use of di-
chloromethane and cyclopentyl methyl ether (CPME) as organic
solvents instead of toluene caused the decrease of enantioselec-
tivities (entries 5 and 6), the reaction in mesitylene/H2O
enhanced enantioselectivity (80% ee, entry 7). The highest enan-
tioselectivity was attained when lower temperature (0 °C) was

Scheme 1 Direct asymmetric aldol reaction under base-free neutral
phase-transfer conditions.

†This article is part of the Organic & Biomolecular Chemistry 10th
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‡Electronic supplementary information (ESI) available: Experimental
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employed in mesitylene/H2O with prolonged reaction time (91%
ee, entry 8).9,10 The reaction using benzyl 2-nitropropanoate
under this optimized reaction conditions also gave the aldol
product 2c with high enantioselectivity (87% ee, entry 9).

It should be noted that the reaction under ordinary phase-
transfer conditions using aqueous base solutions, such as
aqueous K2CO3, caused a serious decrease in enantioselectivity
(Scheme 2).11 Even with PhCO2K as a relatively mild base,
decrease of enantioselectivity was observed in the reaction.
These results clearly indicate that the neutral phase-transfer con-
ditions are crucially important to obtain high enantioselectivity
in the present reaction.

With optimal reaction conditions in hand, we studied the sub-
strate generality of the direct asymmetric aldol reaction of α-sub-
stituted nitroacetates with aqueous formaldehyde under the
neutral phase-transfer conditions (Table 2). Various types of
nitroacetates were found to be employable for the reaction. The
reaction of nitroacetates with a simple alkyl chain gave the corre-
sponding aldol products in good to high enantioselectivities
(81–91% ee, entries 1–6). The nitroacetates possessing func-
tional groups were also employable for the reaction to give corre-
sponding products 3e and 3f in good enantioselectivities
(74–76% ee, entries 7 and 8). It should be noted that even in the
water-rich biphasic reaction system (mesitylene/H2O = 1 : 10),

the reaction gave the product with high enantioselectivity
(entry 2).12

The nitro group of resulting aldol products 2 and 3 can be
readily reduced to obtain α-alkyl serines. For example, treatment
of aldol products 2d and 2c with acetic acid in iso-propanol in
the presence of zinc13 gave the corresponding α-methylserinates
4 and 5, which are core structure of biologically active natural
products such as conagenin14 and piperazimycins,15 in 85 and
88% yields, respectively, without loss of enantioselectivity
(Scheme 3). The absolute configuration of product 5 was
assigned to be R by comparison of the optical rotation with the
literature value.14d

In summary, we have developed the enantioselective direct
aldol reaction of α-substituted nitroacetates with aqueous formal-
dehyde for the synthesis of α-alkyl serines as biologically impor-
tant compounds. The base-free neutral phase-transfer conditions
with a bifunctional chiral phase-transfer catalyst are indis-
pensable to obtain high enantioselectivity. The present report
demonstrates a valuable example of hitherto difficult highly
enantioselective direct aldol reactions catalyzed by tetraalkylam-
monium bromide. Further investigations on the neutral phase-
transfer reaction system using a chiral bifunctional ammonium
salt to produce important compounds are currently underway.

Table 1 Optimization of reaction conditionsa

Entry R1 Solvent Yieldb (%) eec (%)

1 Me Toluene 91 (2a) ∼0
2 t-Bu Toluene 98 (2b) 7
3 Bn Toluene 99 (2c) 35
4 CHPh2 Toluene 98 (2d) 68
5 CHPh2 CH2Cl2 55 (2d) 51
6 CHPh2 CPMEd 89 (2d) 29
7 CHPh2 Mesitylene 79 (2d) 80
8e CHPh2 Mesitylene 86 (2d) 91
9e Bn Mesitylene 98 (2c) 87

aReaction conditions: 2-nitropropanoate (0.050 mmol) and 37%
aqueous formaldehyde (0.25 mmol) in the presence of 0.1 mol% of (S)-
1 in organic solvent (1.0 mL)/H2O (1.0 mL) at room temperature
(25 °C) for 24 h. bYield of isolated products. cDetermined by chiral
HPLC analysis. dCPME = cyclopentyl methyl ether. eReaction was
performed at 0 °C for 60 h.

Scheme 2 Effect of aqueous base solution.

Table 2 Direct asymmetric aldol reaction of α-substituted nitroacetates
with aqueous formaldehydea

Entry R2 Yieldb (%) eec (%)

1 Me 86 (2d) 91
2d Me 76 (2d) 91
3 Et 70 (3a) 83
4 n-Pr 71 (3b) 81
5 n-Bu 86 (3c) 81
6e (CH3)2CHCH2CH2 77 (3d) 82
7 CH2 = CHCH2CH2 70 (3e) 76
8f BocNH(CH2)3CH2 62 (3f) 74

aReaction conditions: α-substituted nitroacetate (0.050 mmol) and 37%
aqueous formaldehyde (0.25 mmol) in the presence of 0.1 mol% of (S)-
1 in mesitylene (1.0 mL)/H2O (1.0 mL) at 0 °C for 60 h. bYield of
isolated products. cDetermined by chiral HPLC analysis. dReaction was
performed in mesitylene/H2O = 1 : 10. eReaction was performed with
0.5 mol% of (S)-1 for 48 h. f Reaction was performed with 0.5 mol% of
(S)-1.

Scheme 3 Reduction of the nitro group on products.
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