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The direct catalytic asymmetric aldol reaction of a-substituted nitroacetates
with aqueous formaldehyde under base-free neutral phase-transfer

conditionsti
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Enantioselective direct aldol reaction of a-substituted nitro-
acetates with aqueous formaldehyde for the synthesis of
a-alkyl serines has been achieved under base-free neutral
phase-transfer conditions with a bifunctional chiral phase-
transfer catalyst.

For over two decades, asymmetric phase-transfer catalysis based
on the use of structurally well-defined chiral quaternary
ammonium salts as phase-transfer catalysts has been a topic of
great scientific interest, and recent enormous efforts have resulted
in notable achievements, making it feasible to perform various
stereoselective bond formations under phase-transfer conditions
with aqueous or solid bases.! Among them, development of
highly enantioselective direct aldol reactions,” which are one of
the most important reactions in organic synthesis, is a formidable
challenge in phase-transfer chemistry. Although a few examples
of direct catalytic asymmetric aldol reactions under phase-trans-
fer conditions have been reported,®* the stereoselectivity of such
aldol products is low to moderate in most cases, except one
example.* The main reason for modest selectivity of the reac-
tions originates from the retro-aldol reaction, which is difficult to
suppress under basic phase-transfer conditions.® In the course of
our study on the development of asymmetric reactions under
phase-transfer conditions, we have recently discovered the
hitherto unknown base-free neutral phase-transfer reaction
system in enantioselective conjugate additions.® In this context,
we are interested in the application of this attractive base-free
neutral reaction system to the direct aldol reaction. Here we wish
to report direct catalytic asymmetric aldol reaction of a-substi-
tuted nitroacetates with aqueous formaldehyde, which is one of
the most convenient Cl sources in organic synthesis,” under
base-free neutral phase-transfer conditions with low catalyst
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loading (0.1 mol%). This reaction offers a practical synthetic
method for optically active a-alkyl serines as biologically impor-
tant compounds (Scheme D3

We first investigated the effect of ester moiety of 2-nitropro-
panoate in asymmetric aldol reaction with aqueous formaldehyde
under base-free neutral conditions (Table 1, entries 1-4).
Attempted reaction of methyl 2-nitropropanoate and aqueous for-
maldehyde in toluene/H,O (1 : 1) under the influence of bifunc-
tional chiral phase-transfer catalyst (S)-1 with low catalyst
loading (0.1 mol%) at room temperature (25 °C) for 24 hours
afforded an aldol product 2a in high yield with almost no enan-
tioselectivity (entry 1). Exchange of the alkyl group of ester
moiety to bulky tert-butyl group gave the aldol product 2b with
low enantioselectivity (entry 2). Pleasingly, the use of benzyl
2-nitropropanoate improved the enantioselectivity (35% ee, entry
3), and further improvement of enantioselectivity was attained
using diphenylmethyl 2-nitropropanoate as a substrate in
toluene/H,O (68% ee, entry 4). With the diphenylmethyl 2-nitro-
propanoate as a key substrate for the reaction, solvent effect was
investigated (Table 1, entries 4—7). Although the use of di-
chloromethane and cyclopentyl methyl ether (CPME) as organic
solvents instead of toluene caused the decrease of enantioselec-
tivities (entries 5 and 6), the reaction in mesitylene/H,O
enhanced enantioselectivity (80% ee, entry 7). The highest enan-
tioselectivity was attained when lower temperature (0 °C) was

(SH1
1 1
O,N YCOZR (0.1 mol %) O5N CO,R
+ ag.HCHO ——> \i
R2 R? OH
base-free
Ar. Ar \ i
reduction
OH p©
H,N CO,R’
@/ \ ~
N (0] CF X
\ / 3 R OH
a-alkyl serines
oH A=
A’ Ar ii CF3
(SH1

Scheme 1 Direct asymmetric aldol reaction under base-free neutral
phase-transfer conditions.
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Table 1 Optimization of reaction conditions®

(SH
O,N.__COsR! (0.1mol%)  O,N_ _CO,R!
h + agHCHO — » K

Me solvent/H,0 Me OH

(1) 2
rt,24 h

Entry R Solvent Yield® (%) e’ (%)
1 Me Toluene 91 (2a) ~0
2 t-Bu Toluene 98 (2b) 7
3 Bn Toluene 99 (2¢) 35
4 CHPh, Toluene 98 (2d) 68
5 CHPh, CHzClg 55 (2d) 51
6 CHPh, CPME 89 (2d) 29
7 CHPh, Mesitylene 79 (2d) 80
8¢ CHPh, Mesitylene 86 (2d) 91
9¢ Bn Mesitylene 98 (2¢) 87

“Reaction conditions: 2-nitropropanoate (0.050 mmol) and 37%
aqueous formaldehyde (0.25 mmol) in the presence of 0.1 mol% of (S)-
1 in organic solvent (1.0 mL)/H,O (1.0 mL) at room temperature
(25 °C) for 24 h. ?Yield of isolated products. © Determined by chiral
HPLC analysis. “CPME = cyclopentyl methyl ether. Reaction was
performed at 0 °C for 60 h.

(SH1
O,N CO,CHPh, (0.1 mol %) O,N CO,CHPh,
e + aQ.HCHO ———>
Me solvent Mée OH
0°C,60h 2d

mesitylene/H,0 (1/1) : 86% yield, 91% ee
mesitylene/10% aq. KoCO3 (1/1) : 97% yield, ~0% ee
mesitylene/10% aqg. PhCO-K (1/1) : 66% yield, 74% ee

Scheme 2 Effect of aqueous base solution.

employed in mesitylene/H,O with prolonged reaction time (91%
ee, entry 8).”'° The reaction using benzyl 2-nitropropanoate
under this optimized reaction conditions also gave the aldol
product 2¢ with high enantioselectivity (87% ee, entry 9).

It should be noted that the reaction under ordinary phase-
transfer conditions using aqueous base solutions, such as
aqueous K,CO;, caused a serious decrease in enantioselectivity
(Scheme 2).!' Even with PhCO,K as a relatively mild base,
decrease of enantioselectivity was observed in the reaction.
These results clearly indicate that the neutral phase-transfer con-
ditions are crucially important to obtain high enantioselectivity
in the present reaction.

With optimal reaction conditions in hand, we studied the sub-
strate generality of the direct asymmetric aldol reaction of o-sub-
stituted nitroacetates with aqueous formaldehyde under the
neutral phase-transfer conditions (Table 2). Various types of
nitroacetates were found to be employable for the reaction. The
reaction of nitroacetates with a simple alkyl chain gave the corre-
sponding aldol products in good to high enantioselectivities
(81-91% ee, entries 1-6). The nitroacetates possessing func-
tional groups were also employable for the reaction to give corre-
sponding products 3e and 3f in good enantioselectivities
(74-76% ee, entries 7 and 8). It should be noted that even in the
water-rich biphasic reaction system (mesitylene/H,O = 1:10),

Table 2 Direct asymmetric aldol reaction of o-substituted nitroacetates
with aqueous formaldehyde”

(SH1

Oz2N CO,CHPh, (0.1 mol %) O.N CO,CHPh,
e + ag. HCHO h
R2 mesitylene/H,0 R2 OH
(111) 3
0°C,60h
Entry R? Yield” (%) ee” (%)
1 Me 86 (2d) 91
29 Me 76 (2d) 9]
3 Et 70 (3a) 83
4 n-Pr 71 (3b) 81
5 n-Bu 86 (3¢) 81
6° (CH3),CHCH,CH, 77 (3d) 82
7 CH, = CHCH,CH, 70 (3e) 76
8 BocNH(CH,);CH, 62 (3f) 74

“Reaction conditions: a-substituted nitroacetate (0.050 mmol) and 37%
aqueous formaldehyde (0.25 mmol) in the presence of 0.1 mol% of (S)-
1 in mesitylene (1.0 mL)/H,O (1.0 mL) at 0 °C for 60 h. b Yield of
isolated products.  Determined by chiral HPLC analysis. ¢ Reaction was
performed in mesitylene/H,O = 1:10. “Reaction was performed with
0.5 mol% of (S)-1 for 48 h./ Reaction was performed with 0.5 mol% of
(-1

OoN CO,R Zn, AcOH HyN CO.R
o o X
Me OH i-PrOH Me OH
2d: R = CHPh;, n6h 4: R = CHPh,
(91% ee) 85% yield (91% ee)
2c:R=Bn 5: R = Bn, 88% yield
(87% ee) [o]® = +7.5 (¢ = 1.1, CHCl3)

lit. [o]2° = -9.0 (c = 0.66, CHCl5) (S)

Scheme 3 Reduction of the nitro group on products.

the reaction gave the product with high enantioselectivity
(entry 2).'?

The nitro group of resulting aldol products 2 and 3 can be
readily reduced to obtain a-alkyl serines. For example, treatment
of aldol products 2d and 2¢ with acetic acid in iso-propanol in
the presence of zinc'® gave the corresponding o-methylserinates
4 and 5, which are core structure of biologically active natural
products such as conagenin'® and piperazimycins,'® in 85 and
88% yields, respectively, without loss of enantioselectivity
(Scheme 3). The absolute configuration of product 5 was
assigned to be R by comparison of the optical rotation with the
literature value.'*

In summary, we have developed the enantioselective direct
aldol reaction of o-substituted nitroacetates with aqueous formal-
dehyde for the synthesis of a-alkyl serines as biologically impor-
tant compounds. The base-free neutral phase-transfer conditions
with a bifunctional chiral phase-transfer catalyst are indis-
pensable to obtain high enantioselectivity. The present report
demonstrates a valuable example of hitherto difficult highly
enantioselective direct aldol reactions catalyzed by tetraalkylam-
monium bromide. Further investigations on the neutral phase-
transfer reaction system using a chiral bifunctional ammonium
salt to produce important compounds are currently underway.
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